TDK recently announced the launch of the CUR 4000 Hall-effect sensor. The sensor, developed for highly accurate current measurements in automotive and industrial applications, offers non-intrusive, galvanic isolated contactless current sensing. These features will contribute to the future of high-voltage systems of hybrid and electric vehicles (xEV). The product is suited for DC and AC measurements and overcurrent detection in high-power battery monitoring applications and can measure dynamic current ranges up to ≥2000 A.* For these kind of measurement tasks, CUR 4000 comes with different configurable modes for linear core-based and differential coreless application setups.

The sensor's production is planned for the second quarter of 2021, with samples already available.

In the linear modes of CUR 4000, a configurable array of Hall elements enables highly accurate measurements for core-based stray-field robust sensor-module designs. The differential mode enables minimal coreless and stray-field robust system designs without shields. Read-out of the complete Hall array provides an output-offset temperature-drift below ±0.05 percent full scale. Furthermore, the sensor delivers a hysteresis-free output signal. A non-linearity error of ±0.2 percent and a noise performance of ±0.005 percent full scale allows precise current measurements with a signal bandwidth of up to 8 kHz.

TDK release flexible Multi-Hall-array sensor for high-precision current sensing-SemiMedia

TDK used proven Hall sensor technology to structure the CUR 4000. Primary characteristics, like temperature dependent gain and offset can be adjusted to the magnetic circuitry by programming the non-volatile memory. CUR 4000 is defined as SEooC ASIL-B ready, according to ISO 26262 with several on-board diagnostic functions, which builds a basis for current sensor modules with a higher ASIL level using redundancy techniques or a combination with other current sensing technologies.

CUR 4000 is available in a small eight-pin SOIC8 SMD package for less complex assembly compared to through-hole packages.